Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.18.484953

ABSTRACT

Multiple COVID-19 vaccines, representing diverse vaccine platforms, successfully protect against symptomatic COVID-19 cases and deaths. Head-to-head comparisons of T cell, B cell, and antibody responses to diverse vaccines in humans are likely to be informative for understanding protective immunity against COVID-19, with particular interest in immune memory. Here, SARS-CoV-2-spike--specific immune responses to Moderna mRNA-1273, Pfizer/BioNTech BNT162b2, Janssen Ad26.COV2.S and Novavax NVX-CoV2373 were examined longitudinally for 6 months. 100% of individuals made memory CD4+ T cells, with cTfh and CD4-CTL highly represented after mRNA or NVX-CoV2373 vaccination. mRNA vaccines and Ad26.COV2.S induced comparable CD8+ T cell frequencies, though memory CD8+ T cells were only detectable in 60-67% of subjects at 6 months. Ad26.COV2.S was not the strongest immunogen by any measurement, though the Ad26.COV2.S T cell, B cell, and antibody responses were relatively stable over 6 months. A differentiating feature of Ad26.COV2.S immunization was a high frequency of CXCR3+ memory B cells. mRNA vaccinees had substantial declines in neutralizing antibodies, while memory T cells and B cells were comparatively stable over 6 months. These results of these detailed immunological evaluations may also be relevant for vaccine design insights against other pathogens.


Subject(s)
Protein S Deficiency , Pulmonary Disease, Chronic Obstructive , COVID-19
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.15.472874

ABSTRACT

SARS-CoV-2 infection and COVID-19 vaccines elicit memory T cell responses. Here, we report the development of two new pools of Experimentally-defined T cell epitopes derived from the non-spike Remainder of the SARS-CoV-2 proteome (CD4RE and CD8RE). The combination of T cell responses to these new pools and Spike (S) were used to discriminate four groups of subjects with different SARS-CoV-2 infection and COVID-19 vaccine status: non-infected, non-vaccinated (I-V-); infected and non-vaccinated (I+V-); infected and then vaccinated (I+V+); and non-infected and vaccinated (I-V+). The overall classification accuracy based on 30 subjects/group was 89.2% in the original cohort and 88.5% in a validation cohort of 96 subjects. The T cell classification scheme was applicable to different mRNA vaccines, and different lengths of time post-infection/post-vaccination. T cell responses from breakthrough infections (infected vaccinees, V+I+) were also effectively segregated from the responses of vaccinated subjects using the same classification tool system. When all five groups where combined, for a total of 239 different subjects, the classification scheme performance was 86.6%. We anticipate that a T cell-based immunodiagnostic scheme able to classify subjects based on their vaccination and natural infection history will be an important tool for longitudinal monitoring of vaccination and aid in establishing SARS-CoV-2 correlates of protection.


Subject(s)
COVID-19 , Breakthrough Pain
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.08.20208785

ABSTRACT

Airborne spread of COVID-19 by infectious aerosol is all but certain. However, easily implemented approaches to assess the actual environmental threat are currently unavailable. We present a simple approach with the potential to rapidly provide information about the prevalence of SARS-CoV-2 in the atmosphere at any location. We used a portable dehumidifier as a readily available and affordable tool to collect airborne virus in the condensate. The dehumidifiers were deployed in selected locations of a hospital ward with patients reporting flu like symptoms which could possibly be due to COVID-19 over three separate periods of one week. Samples were analyzed frequently for both virus envelope protein and SARS-CoV-2 RNA. In several samples across separate deployments, condensate from dehumidifiers tested positive for the presence of SARS-CoV-2 antigens and confirmed using two independent assays. RNA was detected, but not attributable to SARS-CoV-2. Our results point to a facile pool testing method to sample air in any location in the world and assess the presence and concentration of the infectious agent in order to obtain quantitative risk assessment of exposure, designate zones as hot spots and minimize the need for individual testing which may often be time consuming, expensive and laborious.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL